BMP-Decision Support System (BMP-DSS) Phase I

Prince George's County Maryland

In

Department of Environmental Resources

LID BMP-Model Presentation

Overview of LID Concepts New Developments Urban Retrofits

Bioretention Monitoring - Model Calibration University of Maryland

BMP Model for LID

Low-Impact Development Programs

(1) New Land Developments

Conventional Pipe and Pond Centralized Control

Stormwater Management Pond

LID Uniform Distribution of Micro Controls

Residential Bioretention

Treatment of urban runoff in the upland plant / soil complex

CURB CUT

INLET

DEFLECT

Upland Plants / Shallow Ponding Infiltration and/or Filtration Volume Control Aesthetic Value Habitat Value Property Value Low Cost Maintenance

Bioretention

"Rain Gardens"

Multifunctional use of green space

Combination Filtration / Infiltration

Profile

Uplands Pollutant Removal Plants / Soil Flora -Fauna / Soil Chemistry

Phytoremediation Translocate Accumulate Metabolize Volatilize Detoxify Degrade Exudates **Bioremediation** Soils

Capture / Immobilize Pollutants

Low-Impact Development Programs

(2) Urban Retrofits

Bioretention

Disconnect Inpervious Refe

R

MAY 25 2001

Parking Lot Runoff

15

Stanse way walk

Highway Runoff Treatment

LID Practices (No Limit!)

"Creative Techniques to Treat, Use, Store, Retain, Detain and Recharge"

Bioretention / Rain Gardens Strategic Grading Site Finger Printing Resource Conservation Flatter Wider Swales Flatter Slopes Long Flow Paths Tree / Shrub Depression Turf Depression Landscape Island Storage **Rooftop Detention / Retention Roof Leader Disconnection Parking Lot / Street Storage** Smaller Culverts, Pipes & Inlets

Alternative Surfaces Reduce Impervious Surface Surface Roughness Technology **Rain Barrels / Cisterns / Water Use Catch Basins / Seepage Pits Sidewalk Storage** Vegetative Swales, Buffers & Strips **Infiltration Swales & Trenches Eliminate Curb and Gutter Shoulder Vegetation Maximize Sheet flow Maintain Drainage Patterns** Reforestation..... **Pollution Prevention...**

Monitoring for Bioretention Facilities

COMPONENTS OF A TYPICAL BIORETENTION FACILITY

University of Maryland

Laboratory Studies (Large Box)

Field Studies: Beltway Plaza

Field Studies: Landover

Overall Results: Lead

Overall Results: Phosphorus

Hydrology Calibration

Head Development Curve (Laboratory)

Inflow and Outflow Hydrograph and Water Balance (Laboratory)

Water Quality Calibration

Removal of Zn and TP through bioretention box

Removal of Zn, TP, and TN through Inglewood (Largo) Biorentention system.

Overhead View of the Site

Cell A

Cell B

UMD Bioretention Hydrograph, July 28-29, 2003

Total Lead, November 28, 2003

Total Zinc, November 28, 2003

Nitrate, November 28, 2003

BMP Evaluation Computer Module BMP-DSS Phase I

Project Background County-wide storm water monitoring 1993 to present Development of HSPF model parameter database 1995-1999 **BMP Module development** Phase I: 1999 to 2003 **100% County funded (\$80,000)** Phase II: 2003 to Present 80% EPA Region III; 20% County (\$250,000) **EPA Office of Research & Development (\$250,000)**

Minimum Software Required:

Microsoft Office 2000 Professional

BMP Evaluation Method

Existing Flow &
Pollutant LoadsSIMULATION

– Unit-Area Output by Landuse –

SITE-LEVEL LAND/BMP ROUTING

Simulated

BMP DESIGN
– Site Level Design –

Simulated Flow and Water Quality Assessment

HSPF Landuse Representation

Computational Design

INPUT DATA:

Surface runoff flow and pollutant loads from contributing areas in site

BMP SIMULATION:

User designs/selects each **BMP** and defines the flow routing at the site Flow and pollutant time series routed through the **BMP or IMP network Physical processes are** simulated in the BMP **Output timeseries and** data summary available at each land, BMP, or watershed outlet

BMP Physical Processes

Possible storage processes include: Evapotranspiration Infiltration **Orifice outflow** Weir-controlled overflow spillway **Underdrain outflow Bottom slope influence Bottom roughness influence General loss or decay of pollutant** (Due to settling, plant-uptake, volatilization, etc) **Pollutant filtration through soil medium** (Represented with underdrain outflow) **Depending on the design and type of the BMP, any**

combination of processes may occur during simulation

Inflow: From Land Surface

BMP Class B: Open Channel

Underdrain Outflow Infiltration

Evapotranspiration

Figure 2.6 Processes considered in an underdrain struture

Holtan Infiltration Model

$$f = GIAS_a^{1.4} + f_c$$

 $f = GIAS_a^{1.4} + f_c$

Where

- *GI*: Growth Index of vegetation (% maturity, 10% to 100%)
- **A : Vegetative parameter**
- S_a: Available storage in the soil layer (inches)
- f_c : Final constant infiltration rate (in/hr)

Land Cover	Basal area rating				
	Poor condition	Good condition			
Fallow	0.10	0.30			
Row crops	0.10	0.20			
Small grains	0.20	0.30			
Hay (legumes)	0.20	0.40			
Hay (sod)	0.40	0.60			
Pasture (bunch grass)	0.20	0.40			
Temporary pasture (sod)	0.20	0.60			
Permanent pasture (sod)	0.80	1.00			
Woods and forests	0.80	1.00			
(Source: Table 5.5.3 Maidm	ent, 1993. p. 5.31))				

Estimates of Vegitative Parameter **A** in Holtan Infiltration Model

Final Infiltration Rates fc by Hydrologic Soil Groups

Ну	drologic	Final rate,	f 。 (in/hr)	
So	il Group	min	max	
	Α	0.30	0.76	
	В	0.15	0.30	
	С	0.05	0.15	
	D	0.00	0.05	

(Source: Table 5.5.4 -- Maidment, 1993. p. 5.31)

General Water Quality First Order Decay Representation

 $Mass_2 = Mass_1 \times e^{-kt}$

E

Pollutant Removal is a function of the detention time

BMPID	SOSLD	SOQUAL (BOD, 5 D	
1	0.510800	1.204000	
2	0.287700	0.356700	
3	2.302600	1.204000	
4	1.204000	1.204000	
5	0.693100	0.356700	
6	0.693100	0.223100	
7	0.105400	0.223100	
.	0.105.400	0.000100	Ť
	OK	Cancel	

Underdrain Water Quality Percent Removal $Mass_{out} = Mass_{in} \times (1 - PCTREM)$ **Mass**_{in} = **Surface conc * underdrain flow**

30360	SUQUAL(BUD, 5D
0.100000	0.100000
1.000000	0.200000
0.300000	0.300000
0.400000	0.400000
0.500000	0.500000
1.000000	0.600000
0.700000	0.700000
0.000000	• • • • • •
	0.100000 1.000000 0.300000 0.400000 0.500000 1.000000 0.700000

Underdrain percent removal is a function of the soil media

BMP Class A Example:

Bioretention

BMP Class B Example:

Grassed Swale

BMP Underdrain System: Holtan Infiltration Method

Soil and subsurface flow configuration is available for both Class-A and Class-B BMPs

Figure 6. MDE Design Example Commercial Development Maryland State Manual Example

LID Design Parameters

Design Example No. 2:	Commercial	Development	- Claytor	Community Center
------------------------------	------------	-------------	-----------	------------------

1. Forest C	Condition: 3.0 A	Acre					
2. Develop	ed Condition: (Commercia	l Developm	ent			
	1.9 acre Impe	rvious					
	0.4 acre Woo	ds					
	0.7 acre Pervi	ous					
	Soil Type B:	CN= 87 (p	roposed)				
		CN= 57 (E	xisting Cor	ndition; woo	ds)		
		Design Sto	prm = 3 in				
		12" Biorete	ention Stora	age = 0.375	5 acre (12.5	5% of the a	rea)
		2' Soil Lay	er in Bioret	antion			
		Volume =0).375 acre-	ft = 16335 f	ft ³		
3. Use Bio	pretention Basi	ns of 91' X	180'. total ().376 acre			

Class A BMP Configuration × BMP Name: Bioretention_Basin Estimated Cost: 0 **Basin Dimensions** Width (ft): 91 Length (ft): 180 Orifice Configuration-Exit Type 0.61 0.5 0.61 とわた \odot C C C h Нo Orifice Height (Ho, ft): 0 Orifice Diameter (in): 0 Weir Configuration Weir Type Weir Height (Hw, ft): 1.0 theta Rectangular Weir в Weir Crest Width (B, ft): 40 Ηw Triangular Weir $\mathbf{\Theta}$ Vertex Angle (theta, deg): 0.0 ÖK Cancel

Soil and Subsurface Flow Configuration

Х

Indicator	Units	Predeveloped	Developed no BMPs	Developed with BMPs
Flow	ft³lyr	31,316	259,272	16,345
Sediment	Tonslyr	0.477	21.203	0.452
BOD-5 day	lblyr	4.18	81.66	2.90
Total Nitrogen	lblyr	7.53	22.89	0.97
Total Phosphorus	lblyr	0.836	2.117	0.030
Total Zinc	lblyr	0.251	1.218	0.009

2. Developed Condition:	Commercial Deve	lopment	Comi	mercial	Site
	80% Impervious				
	5% Woods				
	15% Pervious				
	Soil Type B:	CN=90 (proposed)			
		CN= 55 (Existing Condit	ion: woods. aood con	ndition)	
		Design Storm = 3 in		,	
		<u>Curve A = 1.80"</u>			
		Curve B = 1.78"			
		Volume = 2.5 x 1.80 /12	=0.375 acre-ft = 163	35 ft ³	
3. Develped with BMPs	: 5 Bioretentions (5	5×60) with 12 top store	age, A = 16500 π (15	% of Site)	
3. Develped with BMPs	: 5 Bioretentions (5		age, A =16500 π (15		
 Develped with BMPs 1.20 – 	: 5 Bioretentions (5		age, Α = 16500 π (15		
1.20	: 5 Bioretentions (5		age, Α = 16500 π (15		
1.20 1.00	: 5 Bioretentions (5		age, Α = 16500 π (15		
1.20 1.00 0.80			age, A = 16500 ft (15		
1.20 1.00 0.80			age, A = 16500 ft (15		
1.20 1.00 0.80			age, A = 16500 π (15		
1.20 1.00 0.80 0.60					
1.20 1.00 0.80 0.60					
1.20 1.00 0.80 0.60 0.40					
1.20 1.00 0.80 0.60 0.40					
1.20 1.00 0.80 0.60 0.40 0.20 0.00					
1.20 1.00 0.80 0.60 0.40 0.20 Flow	Peak Q	Sediment BOE	age, A = 16500 ft (15	Phosphoru	IS Zinc

Fall Storm 1

14-hour duration double-peak storm

14 hours duration 2.94 inches volume

Factors:

Short duration and very high intensity Double peak within storm, causes high second peak for

The water is falling faster than it can infiltrate into the ground

forested land

Multiple Scenario Peak Flow Comparisons for Selected Storms

Date	Rainfall	Type	Peak Discharge		(cfs)	
Dato	(inches)	1,760	Existing	Proposed w/o BMP	Proposed with BMPs	
11/24/1993	4.03	Fall	1.80	1.96	0.03	
10/13/1995	3.36	Fall	1.46	1.69	0.02	
11/6/1996	2.94	Fall	1.14	1.48	0.02	
2/2/1998	2.39	Winter	0.11	0.30	0.02	
8/1/1993	1.95	Summer	0.00	0.78	0.02	

Design Storm 24-hour Synthetic USDA-SCS & U.S. Weather Bureau

Storm placed in the Fall (like the others)

Factors:

24-hour duration (much longer than others), single peak

10 dry-days prior to the start of the storm

Under this idealized condition, the forest peak flow is 94% lower than the urban composite

Somerset Subdivision

Fall Storm 2

12-hour duration double-peak storm

2 consecutive hours of intense rainfall in 2nd peak (0.86, 0.8)

Factors:

16 hour storm duration 4.03 in total rainfall 1.66 inches in 2 hours

Generally higher GW (not shown) due to wetter-than-usual Fall

The water is falling faster than it can infiltrate into the ground

Fall Storm 3

2 consecutive events

#1: 8 hrs, 2.21 inches #2: 9 hrs, 1.15 inches

Factors:

Short duration + High intensity

Rainfall is coming faster than the ground can infiltrate within that time period

Summer Storm 1

Double-peak event

10 hour duration 1.95 inch volume

Almost no runoff from forest

Factors:

Summer event means higher interception, evapotransporation

Higher infiltration potential, lower runoff potential

This intense double peak event responds differently because of the season of the year

Summer Storm 2

1.62 in. over 4 hours with 1.09 in. for 1 hr

1.84 in. scattered over 14 hours with 0.78 in/hour peak

Factors:

Summer event means higher interception, evapotransporation

Higher infiltration potential, lower runoff potential

These intense rainfall events respond differently because of the season of the year

Winter Storm 1

2.39 inches volume28 hour duration

Factors:

Storm occurs in a wet part of the year

Low intensity, long duration storm

Even though it is a wet season, forest peak is 65% lower than urban because for this case, duration has a stronger influence on peak flow than volume

Major Module Enhancements Phase II

The Fill Anny Beard Solution had blocker that		
D = D - L - D - D - D - D - D - D - D - D -	The state of the second se	THE ACCURATE AND ADDRESS OF
		215 - 10 00
0011100***** * 0 # 0	7 Agen Childre . Solid grater . Lanc (nor, wenn	Header • 97
Same and a second secon	The second se	11
	1.00070110	PROVIDENCE /

GIS Linkage

LID – CSO Linkage

Optimization