LID INTEGRATED MANAGEMENT PRACTICES GUIDE

Introduction

Definition of Terms/Glossary

Low Impact Development (LID): an innovative approach to storm water management that attempts to duplicate the hydrologic regime of an undeveloped watershed.

Integrated Management Practices (IMPs): engineering measures used in low impact development that compensate for the reduced infiltration and storage characteristics of developed sites.

Conservation and Minimization: IMPs that reduce the generation of runoff by preserving the natural conditions and limiting the aerial extent of impervious surfaces. **Storage:** IMPs that retain or detain rain water to prevent or delay the generation of runoff.

Conveyance: IMPs that convey runoff throughout the site while providing opportunities for infiltration or treatment.

Landscaping: IMPs that alter the terrain and vegetation cover to minimize and treat runoff.

Infiltration: IMPs whose primary function is to allow runoff to infiltrate into the soil.

Introduction

Narrowing of Residential Streets

Description

Narrowing streets increases green space Space gained can be replaced with pervious areas, bioretention facilities, or vegetated channels

Can reduce vehicle speed

Design Characteristics

Streets can be narrowed to 25 feet Consider off-road parking, sidewalk location and traffic densities

Applicability

New, low-density residential areas Higher density areas if municipal parking and safety requirements can be met

Concave Medians

Description

Gently sloping vegetated channels allow for additional storage and infiltration

Avoid potential problems with grassed channels (parking and pedestrian obstacles) Narrowed travel lane slopes toward median Linear IMP treats runoff

Design Characteristics

Residential configuration usually part of overall infrastructure design Consider off-road parking, sidewalk location, traffic densities, driveway access and conveyance for runoff

Applicability

New, low-density residential development Higher density areas if municipal parking and safety requirements can be met

Reduction of Impervious Sidewalks

Description

- Less impervious sidewalk reduces amount of runoff
- Space gained allows for linear IMPs adjacent to road

Design Characteristics

- Reduction done as part of overall infrastructure design (storm water and transportation)
- Replace sidewalks with pervious materials "trails" (pavers, gravel, mulch)
- Considerations include pedestrian traffic patterns

Applicability

New developments

Grated Infiltration Systems

Description

Tree grates can be retrofitted to collect runoff Can be placed over an infiltration system, crosswalk, and along parking lots

Design Characteristics

- Must be able to bear pedestrian and/or vehicular weight
- Should be removable to allow for maintenance

Applicability

- Where space is limited or landscaping not desired
- New development and retrofits

Porous Pavement

Description

Allows storm water to infiltrate and reach soil

Design Characteristics

Types include porous asphalt and concrete Can be used along shoulders or in parking areas adjacent to conventional asphalt or concrete in high traffic areas

Applicability

Office building, recreational facility and shopping center parking lots

Not recommended for industrial sites due to risk of groundwater contamination

As IMP retrofit option, consider potential for soil compaction

Landscaped Traffic Calming Features

Description

Used to slow or prevent traffic through residential areas

Increase pedestrian safety

Provide storm water management through use of bioretention areas or infiltration IMPs

Design Characteristics

Bioretention - traffic circles, chokers, etc. Infiltration facilities - crosswalks, speed tables and speed humps

Pervious materials may be used as infiltration trenches or porous layers

Applicability

Where traffic management is desired and where soils have adequate infiltration capacity

Parking Area Conversion

Description

Impervious materials can be replaced with pervious materials in on-street parking areas Conversion can be done along with landscaped traffic-calming feature

Design Characteristics

- Selected pervious material must withstand expected traffic volume
- Consider snow removal in design
- Runoff storage may be provided under pervious layer

Applicability

New development Existing neighborhoods with extensive retrofits

Parking Groves

Description

- Individual parking stalls covered with pervious surface
- Stalls lined with trees for shade and aesthetics

Design Characteristics

- Choose pervious material according to traffic volume and speed
- Stall width must accommodate mature trees
- Additional water storage can be provided under pervious layer
- Consider snow removal in design

Applicability

New commercial or institutional parking lots Can use to retrofit existing lots Native soils must have adequate drainage

Grid Pavers

Description

Interlocking concrete blocks, brick, turf block, or stone used to replace impervious pavement

Interstices between pavers allow for infiltration

Design Characteristics

Consider traffic volume in material selection Turf blocks – good infiltration, limited vehicular traffic

Concrete pavers – not as much infiltration, more durable

Applicability

Ideal for walking surfaces Replacement for impervious pavement in areas with low to moderate traffic

Pedestal Sidewalks

Description

Pedestals support sidewalk paving units over the subgrade

Storage provided where water flows between pavers and fills space below

Release of water is slowed at discharge point

Design Characteristics

Pedestals should allow for at least one inch of storage

Enough pedestals must be provided for stability

Overflow outlet can be installed to control water level

Remove pavers periodically for inspection and maintenance

Applicability

Use wherever pavers are used

Rain Water Capture and Use

Description

Roof water cisterns are storage devices to collect roof storm water

Water can be released, infiltrated, or reused

Design Characteristics

Install above ground (rain barrels) or underground (concrete structures with pump or gravity drainage)

Size depends on roof area

Can be incorporated into landscaping features

Applicability

Commercial, residential or anywhere there is space for containers

Roof Top Detention

Description

Temporary detention and gradual controlled release of rain on flat rooftops

Design Characteristics

Water ponds behind perforated weirs around inlets of roof down drains and is slowly released

Water above the maximum depth is released to the down drains so that they operate at maximum capacity.

Structural capacity of roof and waterproofing must be considered during design

Applicability

Any flat roof

More efficient for commercial and industrial uses

Local municipal regulations may restrict use

Yard Storage

Description

Depressed area in front or back yard where water can pond for 1 - 2 hours after rainfall Receives bypass flow from grassed channel Water stored is slowly released back to channel with some infiltration

Design Characteristics

- Need estimated storage volume from rainfall statistics and drainage area served
- Need outlet for slow release back to grassed channel
- Plant storage area with ground covers

Applicability

New and existing (retrofit) developments

Green Roofs

Description

- Lightweight vegetated roof cover installed on existing buildings
- Vegetation retains water later released through evapotranspiration

Design Characteristics

- Design must include assessment of structural integrity and slope of roof
- Flat roofs require drainage layer; pitched roofs drain by gravity
- Excess water collected at pipe at roof edge leading to other IMPs.

Applicability

New or existing flat to moderately sloped roofs as long as roof can support additional weight

Subsurface Storage

Description

Underground water detention devices installed to receive flow from rooftops, pavement or conveyance system overflow Types include tunnels, vaults, pipes, tanks, rock-filled cavities

Does not impact area above the IMP

Design Characteristics

Storage volume of device must be estimated from rainfall and drainage area served Outlet must be designed for slow release to storm drain with maximum water storage Overflow system required for excess runoff Devices need periodic cleaning

Applicability

New development and existing (retrofit) Constraints, such as utilities, may limit use

Inlet Restriction

Description

Flow detained in parking areas by reducing inlet capacity

Design Characteristics

Restriction can be attained by partially blocking outflow from inlet Restriction must be sized to prevent flooding depth greater than 6 inches

Applicability

Primarily used for retrofitting existing storm drain systems; can be used in new systems Most suited for parking lots in less used areas

Curb Storage

Description

Combination of storage and infiltration features primarily used in parking areas Grading diverts flow toward IMPs in parking islands and along edge of lots

Design Characteristics

- Graded parking lots create temporary detention areas around islands
- Ponded water passes through infiltration trenches; excess water flows along trench to other IMPs or storm drain.
- Must be designed to confine flooding to areas that cause minimal disruption

Applicability

Parking lots or other paved areas where temporary ponding is not problematic

Grassed Channel

Description

Vegetated above-ground channels designed to replace pipes serving small drainage areas Slow storm water flows and increase infiltration

Design Characteristics

- Install on mild slopes
- Add check dams to increase sediment removal and further slow down flow

Should not be constructed in area too wet or shady to support grass growth

Applicability

Any land-use type where space is available Use in single-family or low-density residential housing areas could be restricted by maintenance and space issues

Underdrained Grassed Channel

Description

Gently sloping vegetated channels designed to convey and treat flow from small drainage areas

Reduces velocities, increases infiltration and filters water

Design Characteristics

Contains gravel layer protected by filter fabric below soil layer

Check dams can be used to increase on-site detention and allow longer infiltration times Should not be constructed in area too wet or

shady to support grass growth

Applicability

Any land-use type where space is available Use in single-family or low-density residential areas could be restricted by maintenance and space issues

Exfiltration Grassed Channel

Description

- Conventional grassed channel underlain by perforated pipe
- Pipes are connected to surface inflows with drop manhole and catch basin in channel
- Used to avoid problems related to poor infiltration

Drainage Characteristics

Perforated pipe drainage system increases year-round reliability

Applicability

Any land-use type where space is available Maintenance and space considerations may restrict use to single family or low-density residential areas

Bioretention Channel

Description

Similar to dry channels Water can pond for extended periods of time Reduces velocities and filters water as runoff flows in channel

Design Characteristics

Used to create wetland-type conditions on sites with high water tables supporting simple emergent wetland communities

Pretreatment options such as riprap filters should be used

Applicability

Suitable for retrofit options in areas with limited space, high water tables and minimal slopes

Not recommended for residential areas due to potential problem with mosquitoes

Infiltration Trench Grassed Channel

Description

Underground structures with vegetated cover

More attractive than exposed gravel infiltration trenches

Improve infiltration features of grassed channels on well-drained soils

Design Characteristics

Timber weir across channel with inlet traps sediment

Spillway allows large flows to pass

Perforated pipe from barrel along top evenly distributes water

Gravel trench wrapped in permeable filter on sides and bottom

Impermeable filter fabric on top with soil medium

Need grass filter strip to pre-treat storm water

Applicability

Suitable in areas with well-drained soils Space limitations may limit use for retrofitting existing development

Disconnection of Impervious Areas

Description

Runoff redirected to graded green areas to reduce runoff by improving infiltration and evapotranspiration

Design Characteristics

Paved areas must be sloped towards vegetated areas

Width of vegetation depends on area of contributing pavement

Sheet flow enters transition zone before flowing through vegetation

Concentrated flows from roofs and steep driveways must be diverted through dispersion trench

Applicability

Suitable for single family residential and commercial areas with enough space to accept dispersed storm water flows Surfaces include moderately sloped driveways, sport courts, sidewalks and patios

Bioretention

Description

Shallow, landscaped areas Improve water quality through filtration, sedimentation and biological processes Off-line systems capture flow from small storms and initial flow from larger storms

Design Characteristics

Flow deflectors divert runoff

Landscaped with native water-tolerant plants

Space limitations may limit use of grass filters or dispersion trenches to slow and distribute flows

Applicability

Can be used in almost any type of land use or in-situ soil

Off-line bioretention is good for retrofitting in areas with limited space and difficult grade adjustments

Low maintenance landscaping makes system good choice for parking lots

Bioretention Islands

Description

Shallow, landscaped areas Improve water quality from paved areas through filtration, sedimentation and biological processes Capture runoff from small storms and initial

runoff from larger storms

Design Characteristics

Flexible shape and size Runoff may need to be directed to islands Dispersion trench can slow and disperse concentrated flows

Applicability

Can be used in almost any type of land use or in-situ soil

Retrofitting in areas where space is limited and grade adjustments are difficult

Good for parking lots, intersections and paved areas adjacent to roads

Short groundcover can be used where sight lines are important

Linear Bioretention

Description

Shallow, landscaped areas Off-line systems capture flow from small storms and initial flow from larger storms Captures and treats runoff from roads and parking lots to improve storm water quality

Design Characteristics

Runoff reduces need for additional watering of landscaping

Grass filter strip can be used to prevent clogging

Applicability

Can be used in almost any type of land use or in-situ soil

Well-suited for retrofitting streets in existing developments as long as sidewalk removal leaves enough space

Good for areas near roads due to plant's need for less water

Short ground cover can be used to minimize obstruction of site lines

Bioretention Bench

Description

Shallow, landscaped areas on slopes Treats runoff while allowing it to pond Improves quality through infiltration, sedimentation and biological processes Treated water discharges as runoff

Design Characteristics

Located on slope with "weeping wall" Retaining walls made of lumber, stone or gabions

Applicability

Limited to open spaces with moderate slopes Applicable in high-density residential or institutional land uses

Underdrained Bioretention

Description

Similar to conventional bioretention systems Used where building proximity or poor draining in-situ soils require underdrain systems

Design Characteristics

- Underdrain system can include pipes, gravel layers and collector pipes
- Can handle larger flows than typical bioretention areas
- Excess flows may be bypassed or discharged through spillway
- Landscaping must be drought tolerant

Applicability

- Almost any type of land use and suitable for retrofitting
- Good in areas with limited space and an existing storm drain system

Slope Reduction Bench

Description

- Ground surfaces are sloped as benches or flat channels
- Terraces redirect water to flow along contours
- Decreases runoff velocity
- Facilitates settling of solids and provides storage

Design Characteristics

- Terrace width varies with slope and soil stability conditions
- Vegetation must be used to stabilize terrace slopes

Applicability

Suitable for large, sloped areas May be used along road, rail or utility rightof-ways

Landscaping IMPs

Filter Strips

Description

- Vegetated buffers used to slow down and filter runoff
- Provides limited infiltration
- Dense vegetation, long flow path and low gradient are most effective

Design Characteristics

- Commonly used as pre-treatment Without other IMPs, it effectively treats runoff from only low intensity rainfall
- Does not reduce peak discharges to predevelopment levels
- Must be used with flow spreaders to disperse concentrated flows

Applicability

Limited use in urban areas due to flow length and gradient requirement Used primarily along roadways

Rain Gardens

Description

Low-lying areas away from homes where water collects during heavy rains Naturally slows down flow into drainage systems and streams

Design Characteristics

Use water-tolerant plants Plants increase infiltration and evapotranspiration rates

Applicability

Can be used in new development Especially useful for retrofitting large yards

Landscaping IMPs

Fish Pond

Description

Ponds receive runoff, provide storage and help remove solids

Rainwater preferred over chlorinated water

Design Characteristics

Design should allow for additional storage above normal level

Outlet releases excess volume and spillway handles overflows

Fish should be pollution-tolerant (e.g., gold fish)

Provide a minimum depth of 15 inches to maintain fish habitat during winter

Impermeable liner and other equipment help maintain proper conditions

Applicability

Backyards, schools, office buildings, shopping malls

Dripline Planter Box

Description

Water dripping from roof used to water plants Configurations include foundation plantings below roof edge or box planters along side of building

Design Characteristics

Runoff can be sent from down-spouts or as spray from rain dispersers

Planter volume based on area of roof

Planting bed slope should be away from foundation to prevent basement leakage

Applicability

New and existing development in any type of building

Native Groundcover Landscaping

Description

Portions of lawn planted with native ground covers, shrubs and trees

Replicates infiltration in forested areas

Design Characteristics

Consider maintenance in selection of plants Can be used to provide screening, privacy, shade and year-round natural aesthetics

Applicability

Feasible for any land-use type Slopes require special consideration to prevent erosion

Green Alleys

Description

Linear network of bioretention basins, infiltration trenches, and channels Create landscaped features along the edge of developments, fence lines or roads Provide redundant storm water quality management and conveyance functions

Design Features

Components of each IMP are incorporated into alley design

Individual IMPs can be connected via perforated or solid pipe, infiltration trenches, or sand filters

Applicability

Use where linear pervious areas permit the installation of a linear network of IMPs

Infiltration Trench

Description

Linear trenches used in areas where space for storm water management is long and narrow Can be used with berms

Design Characteristics

Minimum of 3' wide with washed rock wrapped in filter fabric and overlain with permeable backfill

Berm allows ponding and can be landscaped Plunge pool, pre-treatment basin and grass channel at inlet reduce sediment build-up in trench

Curb cuts serve as flow spreaders

Bypass at inlet or spillway manages overflows

Applicability

Well-suited for use as road medians, shoulders and along edge of parking lots Test in-situ soils to ensure that minimum infiltration requirements

Infiltration IMPs

Below-Pavement Infiltration Basins

Description

Runoff that drains through porous pavement, is stored in layer of coarse material and infiltrates into soil

Design Characteristics

In-situ soil below pavement needs adequate drainage and needs to be uncompacted

Storage layer thickness determined by volume of water to be stored

Asphalt thickness determined by bearing capacity needs

Applicability

Adequate for flat, low-volume traffic areas In high traffic areas, porous pavement under parking bays needs to be used with strips of conventional pavement

Can be used in parking lots, highway shoulders, pullover zones and in parking zones along residential streets

Exfiltration Devices

Description

Consist of variety of below grade infiltration devices to treat runoff from localized drainage area

Devices include bottomless metal or precast concrete inlets, or stone fill surrounded by filter fabric

Design Characteristics

Design varies with maintenance needs and site conditions

Metal or precast concrete allow for more storage and can be fitted with lid for maintenance access

Stone fill is less expensive but may clog

Applicability

Useful for "spot-treating" small areas where runoff cannot be easily diverted to another IMP

Require moderate to well-drained in-situ soils

