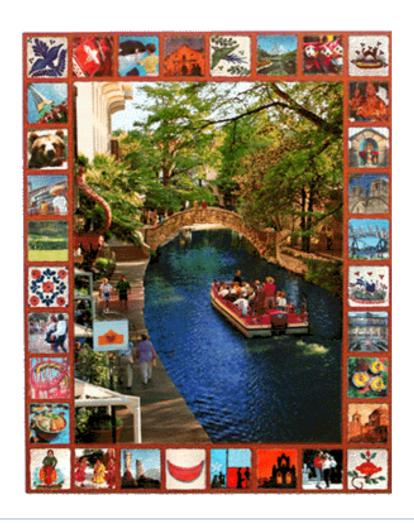
生態工法案例介紹

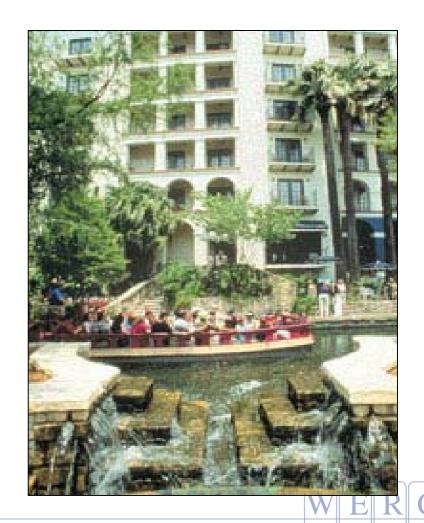
主講人 林鎮洋

台北科技大學 土木系暨環境所副教授 水環境研究中心主任

生態工法案例介紹

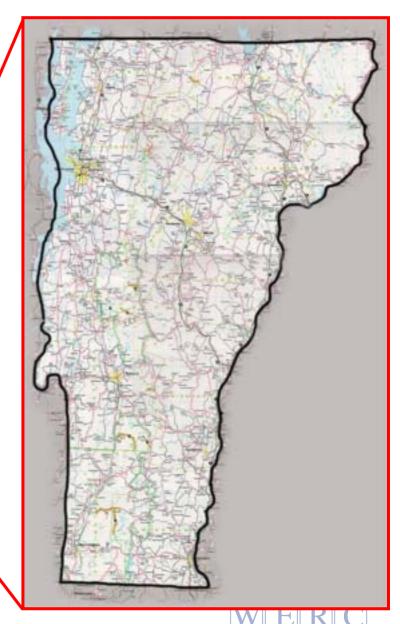
- 美國:佛蒙特州鱒河治理計畫
- 奧地利經驗
- 德國
 - 尼塔河 (Nidda)
 - _ 其他經驗


美國生態工法運用於水資源經營管理


- 1970年代以前,重點為水利運用及控制。
- 1970年代到1980年代,主要考量為水質對人體 健康之影響。
- 1990年代以來,以保護人體健康及生態系統為兩大宗旨。

德州聖安東尼奧 (San Antonio) 的河邊步道區 (River Walk)





佛蒙特州鱒河治理計畫

Trout River, Vermont

- 佛蒙特州位於美國東北角
- 包夾於新罕普夏州、麻州, 以及紐約州之間的小州,

佛蒙特州鱒河治理計畫

Trout River, Vermont

- 當地重要的景觀、漁業及農業資源
- 問題
 - 洪犯
 - 過度開發
 - 土地利用型態的改變
 - 道路的開發
 - 過去缺乏系統化的治理措施
- 結果
 - 河濱崩蝕
 - 流路不穩
 - 魚產下滑
 - 觀光產業萎縮

計畫首要目標

- 改善河岸嚴重侵蝕、沖刷之問題。
- 解決因河床淤積變淺所造成流路變動過劇的現象。
- 回復因河岸崩塌、河床變動所消逝的河畔林,以 改善水域及河濱棲地品質,增加其穩定度,進而 增加漁業產能。
- 重塑自然美質,提振地方觀光產業。

新方案

- 為民眾參與集水區治理工作先鋒計畫
 - 結合政府有關單位、土地所有人、社區代表,以及各相關領域之NGOs (non-government organization)等
 - 集水區的尺度
 - 利用地形學的模擬分析技術,找出最關鍵的問題根源與 癥結所在
- 1998年秋季展開
 - 整合土地所有人、有關單位等之溝通協調方式
 - 分析現有之資料、補足某些河段所缺乏之基本資料
 - 審查各方所提出之補助款申請企畫案等。

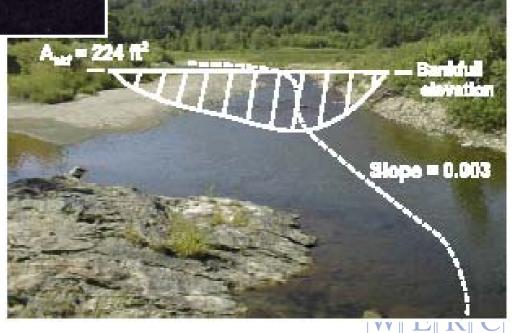
案例:美國

新方案

- 重要的第一步:集水區以及河段之評估調查
 - 確實掌握問題的成因而不單只是問題本身
 - 集水區尺度:針對水文、泥沙搬運等之脈絡,深入評估,
 - 一河段尺度:河道斷面型態、水濱狀況、河床高度及變動

試驗區

- 1999至2000年間展開
- 位於Montgomery Center下游,全長1哩(1.6公里)
- 首先嘗試應用「自然河道設計技術(natural channel design techniques)」
- 設計著重河幅、河床深度的穩定
- 重塑蜿蜒的河道,卻又使其不再像過去一般變動不定
- 河濱及邊坡完成植被復育、栽種


生態工法案例介紹

案例:美國

竣工一年後之成果

參考河段

任務內容	計畫完成日期	實際完成日期
統一土地所有人合作模式	1998年9月	1998年2月
完成判定對照區所需之規模	1998年10月	1998年11月
聘僱地方計畫統籌者,並確保經費來源無虞	1998年10月	1999年3月
鱒河各河段現況調查	1998年12月	1999年5月
完成近自然河道之設計	1999年2月	1999年6月
與管理單位審查計畫內容,並獲得執照	1999年4月	1999年9月
復育並穩定河道結構	1999年8月	1999年11月
執行竣工後之河道調查以監測長期變動	1999年10月起	1999年11月起
河濱廊道造林	1999年10月,及 2000年4 5月	1999年11月,及 2000年4 10月

- 執行為期一年的調查工作,然後才展開第二年的施工 及相關作業。
 - 對魚類之生活史做一全盤性的瞭解,以便將來能有充裕 的資料進行比對與分析。
- 自然化渠道之設計與施工所需之相關技術與規範架構
 - 佛蒙特州環境保育廳 (Vermont Department of Environmental Conservation) 統籌規劃

- 地方社區
 - 土地所有權人:提供緩衝帶所需用地、壤土及植株等材料,以及此類相關服務。
 - 鄉鎮代表:擔任計畫贊助者之一,並負責此類相關服務。
 - 志工團體

- 州政府機關
 - 環境保育廳(Department of Environmental Conservation,
 DEC):為本計畫之領導者,提供技術協助、處理計畫有關之行政業務,並擔任管理者的角色。
 - 交通局(Agency of Transportation):提供經費以及技術上之援助。
 - 佛蒙特州急難應變小組 (Vermont Emergency Management):協助處理經費行政業務。
 - 魚類和野生動物廳(Department of Fish and Wildlife):
 提供技術支援以及魚類調查。
 - 農業廳自然資源保育辦事處(Department of Agriculture,
 Natural Resource Conservation District):協助處理經費行政業務。

工作計畫、人力及經費

聯邦

- 美國漁業與野生動物局(US Fish and Wildlife Service):
 提供技術協助、處理計畫有關之行政業務,並擔任管理者的角色。
- 聯邦緊急應變總署 (Federal Emergency Management Administration):提供經費。
- 農業部自然資源保育署(Natural Resource Conservation
 Service):提供經費、技術支援,以及經費行政業務。
- 美國林務署(US Forest Service):提供技術支援。
- 美國環保署(US EPA):提供經費並擔任管理者之角色。
- Lake Champlain Basin計畫:提供經費。

計畫目標及自然河道設計

案例:美國

- 創造符合地形學原理之穩定河道,以防止:
 - 因沉積-剝蝕機制所造成之農地嚴重流失
 - 上下游河段之不穩定
 - 重蹈過去習慣工法成本高、壽命短的缺點
 - 洪水淹溢
 - 溪流內及河濱地區環境降質

計畫目標及自然河道設計

案例:美國

- 創造符合地形學原理之穩定河道
 - 復建或強化:
 - 懸浮物搬運功能
 - 鱒魚棲地,使更具穩定的深淵、淺灘
 - 回復河濱及濕地之功能
 - 重塑溪流廊道及出海口區域之價值
 - 溪流之遊憩價值
 - 做為未來大眾教育之工具,作為下列技術之良好示範:
 - 會流處、洪氾平原、斷面結構等面向整治之技術,使其具 更有效之水及懸浮物輸送功能
 - 更經濟實惠之防蝕控制、溪流復育、水患防治等工程之替 代方案與設計

成果評估

- 平均每呎成本約\$27.50美元(傳統工法:每呎\$35-40美元),達到有效降低成本之目標。
- 確實提供必須之部會協商、民眾參與管道與機會,驗證其之確實可行。
- 成為後續長期暴雨水量、生態等監測計畫之濫觴,極具實務及研究價值。
- 已成為重要之教育示範區,同時提供垂釣、泛舟等休閒活動之場所,達成恢復多元利用之目標。
- 河岸穩定性之提升:施工前1 2英吋之降雨量便能造成5至10 呎的侵蝕, 竣工後,經由各監測點之數據顯示1999年10月至2000年9月之間,皆未出 現非預期之侵蝕現象。
- 透過HEC-RAS模式運算,輸砂狀況良好,已達規劃設計標準。
- 復育34.3畝的植被,綠覆率提升23%,且人工濕地亦依原計畫發育,河 濱棲地品質及生態功能穩定回復、改善。

整治前

河岸侵蝕問題獲得改善

整治前

整治後

穩定河道渠形,改善河濱棲地環境

整治前

整治後

原本裸露之河岸獲得改善

整治前

整治後

景觀、棲地異質性增加

H-首E T:土安/III/A/III

中歐地區2002年8月的水災,不僅造成重大傷亡,更是 文藝史的浩劫

• 土壤保護技術 (soil protection techniques):

主要在於保護河濱及沿岸區域之表土,降低侵蝕之程度,並改善水、土系統之平衡,甚或土壤溫度等,以致於能有效提升土壤內部之化學、生物反應,改

善地力。

WERC

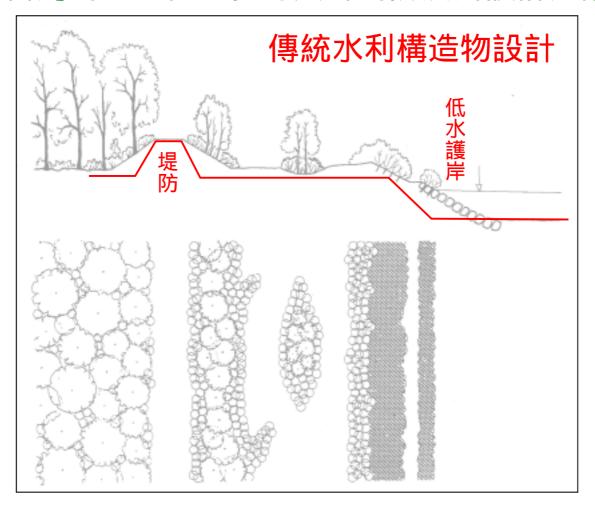
• 地質穩定技術 (ground stabilization techniques):

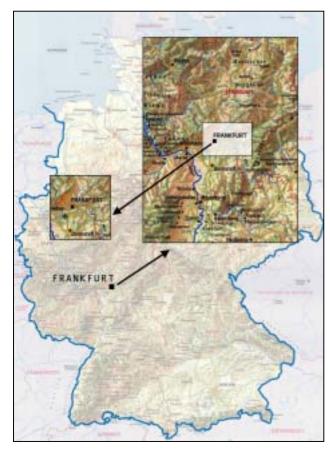
_ 目的:穩固/保護水岸、邊坡以及天然斜坡等,

機制:利用植生根系天然的著生力,及因植生生長機制所提高的蒸散率。

- 聯合式施工技術 (combined construction techniques):
 - 為「地質穩定技術」之延伸。配合石塊、木椿、鋼筋水泥等堅硬造材,增加穩定度並延長使用年限。

- 補助性施工技術 (Supplementary construction techniques):
 - 運用設計過之播種、植栽等方法,使整體工程 所將呈現的風貌、線條更加完善、協調




應用範疇 技術項目	大地工程	河道保護工程	地景工程
土壤保護技術	極高	極高	極高
地質穩定技術	極高	低	極低
聯合式施工技術	極高	極高	普通
補助性施工技術	顯著	高	極高

在台灣的適用性:參考其針對防洪所設計之配套措施

法蘭克福市位於德國之相對位置

法蘭克福市 (FRANKFURT)

黑森邦位於德國行政區相對位置

德國經驗:尼塔河

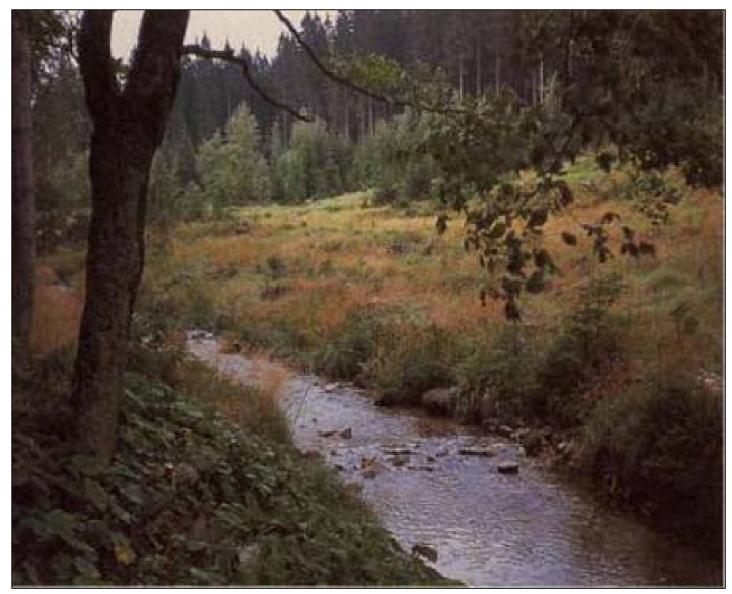
一百年前,德國河畔景象。

親水空間

自然生態工法(Naturnahe)

廊道自然生態環境(Aue)

一百年後,德國河畔實景。


尼塔河環境政策

尼塔河整治目標

Naturnahe 自然生態工法

60年代尼塔河 整治以單調的 形式形成筆直 的人工運河。 1991年起以自 然生態工法進 行河川整治。 会整治後接近 自然原貌。

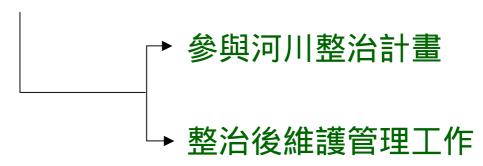
尼塔河河道整治

◎ 60年代尼塔河舊河道。

◎ 整治河道考量魚梯等設施。

A.D. 1960s

A.D. 2001


保留水中沙洲以減緩水流速度

舊有河道需預留爲洪泛區

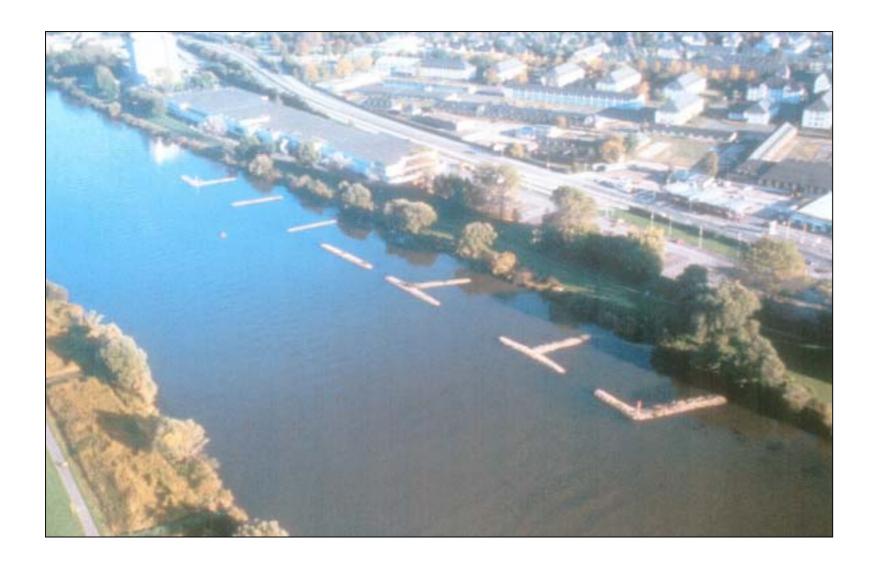
C

推動民眾參與

公開籌措經費

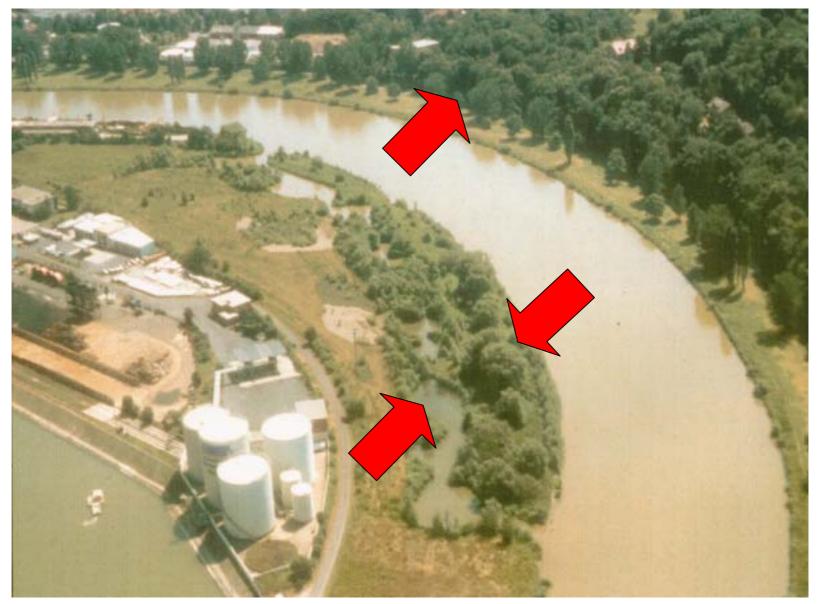
→ 城鎮財政命令籌措財源 (義務性) → 自然保護 — 補償稅捐

後續管理工作與展望



健全民眾參與機制 持續性教育宣導 整合管理集水區周邊計畫 長期生態、環境調查追蹤

- 善用自然力量
 - 抵抗水力不如引導水力
 - 護岸工程的「尺寸」未必和「保護能力」成正比
 - 僅需一部分的構造物,便發揮極大的功效,達到河 岸再牛及洪氾平原保安的功效



- 少一點灰色,多一點綠色
 - 德國許多河岸邊亦伴生有都會區,但許多河段都已經不見堤防的蹤影
 - 系統化的考量
 - 上游的水源涵養
 - 中下游適當的引導、緩衝
 - 綠帶的屏障,都能有效減少灰色比例

- 適可而止的親水觀
 - 親水空間的塑造是國內推動「綠美化」工作的重要產物,
 - 正面影響
 - 提供民眾更優質的遊憩空間
 - 讓有限的水資源,又多一分功能
 - 負面影響
 - 親水空間「氾濫」
 - 在未經評估的情況下,便將「親水空間的營造」列入工程目標之一
 - 無人跡或環境敏感度極高的區域,設有使用率低落或破壞景 觀及生態的親水遊憩設施
 - 應重新學習尊重大自然的需求
 - 教育社會應有的遊憩價值觀

- 償還大自然的損失
 - 善用現有的技術,償還大自然過去的損失,是德國許多有關單位、決策者以及學者專家共同努力的目標。
 - 第一步可以努力的方向:個案棲地的回復
 - 在遭受破壞的地區,進行嚴謹的調查與分析,並使其恢復原有的風貌。
 - 政府與學術界對於引導社會風氣向上提升應責無旁貸
 - 少一點功利的考量,多一點對環境的尊重,是任何高度發展的國家社會應有的具體表現。

復育前 復育後

德國野溪治理

治理前

治理後

探討

- 美國經驗:全面性的規劃,科學化的設計,多元化的經費與參與。
- 奥地利經驗:善善再活資材,豐富綠帶的營造, 進而保全藍帶的穩定與生命。
- 德國經驗:水利與保育並重,安全與生態並行。

結論與建議

- 許多本土型的計畫已陸續完成,應有系統匯集可供參考應用的適宜工法,並鼓勵實務界進行嘗試與落實, 其中除罪化機制建構刻不容緩(如驗收方式)
- 不應侷限於單一工法(如砌石)
- 應採「規劃」與「設計」分工的方式,養護工作價值必須凸顯
- 建立任用必要之特定領域專家(如生態)進行諮商的機制
- 應儘速建立以科學為基礎的示範計畫
 - 提供國內各界參考外
 - 為強化生態工法之深度與廣度的不二法門

The End

