Green Development: The Case of Water Management

綠開發:論水環境之管理

Shaw-Lei Yu Professor of Environmental Engineering University of Virginia, USA 美國維吉尼亞大學 余嘯雷

Impact of Urbanization on the Environment

- Hydrology Higher flood peaks, larger runoff volume, faster flood flows, less evaporation, less groundwater recharge
- Water Quality Stormwater runoff pollution, larger wastewater volumes
- Air Quality
- Other Effects e.g., Temperature

Water Management 水環境之管理

 Quantity Management – Drainage, Flood Control, Low Flow Management 量的管理:排水、防洪、低流管理

 Quality Management – Urban Streams, Ponds and Lakes, etc.

質的管理:都市河川、水池、人工湖等

Integrated Water Resource Management 整體性水資源管理

 Water Supply 給水(上水)

Wastewater

污廢水(下水)

 Stormwater – Quantity, Quality and Ecological Considerations

雨水—量與質以及生態之考量

Stormwater Management

Stormwater Management Objectives

- Peak Flow Rate Control
- Water Quality Control
- Volume Control

Groundwater Recharge

- 洪峰控制
- 水質保護
- 水量控制

Stormwater Management Practices (BMP)

- Detention/Storage Ponds, Tanks
- Infiltration Trenches, Porous Pavement
- Filtration Sand Filters
- Vegetative Buffer Strips, Swales,
- Combined storage/filtration/vegetative Constructed Wetlands, Bioretention Cells

雨水管理技術

- 滯流/蓄流:水池、水槽
- 入滲:入滲溝、透水性路面
- 植物性:緩衝帶、草溝
- 整合性:人造濕地、植生滯流槽

Examples of Stormwater Practices -- BMPs

Some Pictures

Dry and Wet Detention Ponds

*Reduce peak flows *Pollutant removal mainly by gravitational settling and decay

Infiltration Practices

*Reduce runoff volume *Pollutant removal mainly by filtration and mass reduction

Permeable Pavement

Filtration Practices

*Space-limited applications *Pollutant removal mainly by filtration including adsorption, etc.

Sand Filters

Vegetative Practices

*Landscape features, low cost *Removal by infiltration and vegetative uptake of, e.g., nutrients

Combined Storage/Filtration/Vegetative Practices

*Constructed Wetlands *Bioretention Cells – Can be integrated into the landscape

Rte. 288 Outlet Zone

An aerial shot shows the gardens under construction.

What is Bioretention?

"Filtering stormwater runoff through a terrestrial aerobic (upland) plant / soil / microbe complex to remove pollutants through a variety of physical, chemical and biological processes."

The word "bioretention" was derived from the fact that the biomass of the plant / microbe (flora and fauna) complex retains or uptakes many of the pollutants of concern such as N, P and heavy metals.

It is the optimization and combination of bioretention, biodegradation, physical and chemical that makes this system the most efficient of all BMP's

NITROGEN CYCLE FOR BIORETENTION

-Media Tank with plants

Examples of Bioretetnion and Rain Gardens

Rain Garden in a median strip of a townhouse project just inside the beltway. Please note the depressed curb and grate inlet structure,

III II

mi

Rain-Garden (in use) located in the entrance median to a town house Project.

小田

The first Rain Garden in Virginia, located in a turning circle in front of St. Stephens School, Alexandria.

NEW 50' RIGHT-OF-WAY SERVICE UP TO 25 RESIDENCES

LOW IMPACT RESULTS

- 17% LESS ASPHALT SURFACE
- 5-8% STORM WATER RUNOFF REDUCTION
- 86% INCREASE IN GREEN SPACE

Urban LID -- Rooftop Storage, Bioretention Landscaping, Parking Lot Storage, Longer Flow Paths, Swales, Water Use, Pollution <u>Prevention</u>

Bioretention Facility Site

Note: Green shapes approximate location of facility. <u>The facility extends off the</u> <u>photo to the left as well</u>. UNITED STATES POSTAL SERVICE

Stormwater Inlet Point

Facility to be located in large grass island between roadway and parking lot. Facility has drainage area of 0.29 acres, nearly all impervious.

Bioretention Facility Design

• Estimated Costs:

- Piping & Drainage \$1,500
- Grading & Soil Preparation: \$695
- Plants & Planting Costs: \$1,500
- TOTAL ESTIMATED COST: \$3,695
- Cost is \$12,741 per acre of drainage area served
- Estimated flow reductions to storm sewer of 25+% in average summer rainstorms
- Flow storage provided for 400 cf. of water, which is approximately the expected volume of runoff from an average summer rainshower producing 0.4" of precipitation
- In heavy storms, flow will fill bioretention and then bypass to existing storm sewer system

Bioretention Benefits

- **Restores Hydrologic Functions**
- Economically Sustainable
 - Efficient Use of Space / Reduced Infrastructure
 - Property Value
 - Scale of Maintenance Burdens
 - Reduces Development Costs
- New Tool for Urban Retrofit
- Practical / Simple / Universally Applicable

Maintenance and Management

- Cost-sharing
- Cleaning
- Replacement of Parts or Whole
- Cost-effectiveness
- BMPs in a Watershed
- Public Education
- Motivation

Issues for Full Watershed BMP Implementation

Regulatory Framework

- Cost Construction and Maintenance
- Technical Issues: Design Specifications, Water Quality Goals, etc.
- Watershed Partnerships
- Public Education
- Other Issues Motivation, etc.